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Divisors in Residue Classes 

By H. W. Lenstra, Jr. 

Abstract. In this paper the following result is proved. Let r, s and n be integers satisfying 
t) < r < .s < /I, s > I l/3, gcd(r, s) = 1. Then there exist at most 11 positive divisors of n that 
arc congruent to r modulo s. Moreover, there exists an efficient algorithm for determining all 
these divisors. The bound 11 is obtained by means of a combinatorial model related to coding 
theory. It is not known whether 11 is best possible; in any case it cannot be replaced by 5. Nor 
is it known whether similar results are true for significantly smaller values of log s/log n. The 
algorithm trcated in the paper has applications in computational number theory. 

In this paper we prove the following theorem. 

THEOREM. Let r, s and n be integers satisfying 

O <r<s<n, s>n n3, gcd(r,s)= 1. 

Then there exist at most 11 positive divisors of n that are congruent to r niodulo s, and 
there is a polynomial algorithm for determining all these divisors. 

The algorithm referred to in the theorem is described in Section 1. It is polynomial 
in the sense that the number of bit operations required by the algorithm is bounded 
by a polynomial function of the binary length of n. More precisely, we shall see that 
this number of bit operations is O((log n )3). Employing fast multiplication tech- 
niques we can improve this bound to O((log n)2?E) for every E > 0. 

We mention two applications of the algorithm. In several primality testing 
algorithms (see [3], [7]), the number n to be tested is subjected to a collection of 
"; pseudo-prime" tests. If n does not pass all these tests it is composite. If n does pass 
all these tests, one knows that each divisor of n lies in one of a small and explicitly 
known set of residue classes modulo an auxiliary number s. In the latter case, all 
divisors of n can easily be found if s satisfies the condition s > n'/2. Our algorithm 
shows that the same can be done if s satisfies the weaker condition s > nl'/3. In 
special cases this observation was already made in [2, Theorems 5 and 17]. 

The second application is to the related problem of factoring n. Choosing s to be a 
suitable integer exceeding n'/3 and applying our algorithm to all residue classes 
rmod s, we obtain an algorithm that factors n in time O(n(l/3)+e) for every E > 0. 
The same bound was achieved by Lehman [6] and, conjecturally, by Pinter [9], by 
methods that are similar in spirit. There exist better factoring methods, both in 
theory and in practice (see [7]), but this application indicates at least that it may be 
difficult to extend the algorithm to significantly smaller values of s. 
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For the purposes of these two applications, the restrictive condition gcd(r, s) = I 
is clearly not an essential limitation. In the theorem, however, this condition cannot 
be omitted. To see this, we remark that for odd n the divisors of n2 that are 
congruent to n modulo 2n are in one-to-one correspondence with the divisors of n. 
Their number is not bounded by 11, and not even by a polynomial function of 
log(n2), by [4, Theorem 317]; so they cannot be determined by a polynomial 
algorithm. 

In Section 2 we discuss a combinatorial problem that is related to coding theory. 
Using the results of Section 2 we complete the proof of the theorem in Section 3. 
More generally, it is proved that for every real number a > 1 there exists a number 
c(a) with the following property: if r, s, n are positive integers satisfying 

gcd(r, s) = 1, s > n, 

then the number of positive divisors of n that are rmod s is at most c(a). I do not 
know whether the same result holds for any positive a. 

The value 11 in the theorem is the best that can be obtained by our method of 
proof, but it is not clear whether it is best possible. All we know is that it cannot be 
replaced by 5, as is shown in Section 3 by means of examples. 

Acknowledgements are due to H. Cohen, P. Erdos, B. J. Lageweg, A. K. Lenstra, 
A. M. Odlyzko, C. Pomerance, D.B. Zagier and H. Zantema, who all contributed in 
one way or another to the contents of this paper. 

1. The Algorithm. Let r, s and n be as in the theorem. Before we describe the 
algorithm referred to in the theorem we briefly sketch the underlying idea. We look 
for divisors of n of the form xs + r, so we have to solve the equation 

(1.1) (xs + r)(ys + r') = n 

in nonnegative integers x, y; here r' is such that rr' n mod s. Viewing (1.1) 
modulo s2, we obtain a congruence for xr' + yr modulo s. This congruence can be 
used to obtain a series of congruences of the form 

xa, + yb, c, mod s. 

Using that s > n' , one proves that for some i the number xa, + yb, is so small that 
this leaves only a few possible values for xa, + yb,. For each fixed value, x or v can 
be eliminated from (1.1), and the resulting quadratic equation can be solved. 

(1.2) Algorithm. Given r, s and n as in the theorem, this algorithm determines all 
positive divisors of n that are congruent to r modulo s. 

First apply the Euclidean algorithm to calculate an integer r* satisfying r*r 
I mod s, see [5, p. 3251, and determine the integer r' by 

r' r*n mods, 0 < r' < s. 
Secondly, for i = 0, 1, 2,... do the following. Calculate a,, b,, c, from the formulae 

ao=s, bo=O, co =O, 

a, rr* mods, 0 < a <_ s, 
b= I , 

n - rr' 
C, ~ r*od s, 
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and if i > 2 
a, = ai-2 -qai_, 

bi =bi-2 -qibi- I 

ci -ci2 - qici , mods, 

where q, is the unique integer for which 

O<a,<a,-, if iiseven, 

O<ai ai1 if iis odd. 

Next, for each integer c satisfying 

c c,mods, 

(1.3) Icl < s if i is even, 
2abi < c < 

n 
+ aib, if i is odd, 

s2 

solve the pair of equations 

(1.4) (xa, +yb,=c, 
(xs + r)(ys + r') = n 

(see (1.5)), and if x and y are found to be nonnegative integers add xs + r to the list 
of divisors of n that are r mod s. If ai = 0, then the algorithm stops at this point; 
otherwise, proceed with the next value of i. 

This finishes the description of Algorithm (1.2). The correctness will be proved 
below, see (1.7). 

(1.5) It is easily seen that the system (1.4) can be reduced to a single quadratic 
equation in one variable. Explicitly, if we put 

u = a,(xs + r), v = bi(ys + r'), 

then 
uv =a,bin, u + v = cs + air + bir', 

so u, v are the zeros of the polynomial 

T2 _ (cs + air + bir')T + aibin. 

We remark that the numbers ai, b, appearing in the algorithm are computed by 
means of the extended Euclidean algorithm (see [5, p. 325]) applied to s, a,. 
Therefore the termination condition ai = 0 is satisfied for some value of i, and, 
denoting this value by t, we have t = O(log s), by [5, p. 3431. Since ai > 0 for odd i, 
the number t is even. 

The following properties of a,, bi are easily verified by induction: 

(ai, bi) E Z>0 x Z>0 for i odd, 0 < i < t, 

( ,,b,) (Z > x Z< ) (O, O)} for i even, O < i <t 

bi+,ai -a,+1bi= (-l)'s forO < i < t. 

Before we prove the correctness of the algorithm we treat a lemma. 
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(1.6) LEMMA. Let a,, b,, t be as above, and let x, y E R,(, y E R>(. Then there 
exists i E (0, 1. t) such that 

--ys < xa, + yb, < ys if i is even, 

2ya,b, < xa, + ybi < y xy + ya,bi if i is odd. 

Proof. First we consider the numbers xa, + yb, for even values of i. From b() = 0, 
a, = 0, it follows that 

xao + ybO > O, xa, + yb, < O. 

Therefore there is an even index i such that 

xa, + yb, > O, xa,+2 + yb,+ 2 < ?. 

If one of these numbers is less than ys in absolute value we are done. Assume 
therefore that the first is > ys and that the second is < -ys. Then 

(xa, + -yb, )/-y > s b= ,+ , a, - a, +,h , >- b, + , a,, 

sox > yb, ,, and 

(xa,+2 +yb,+2)/y < -s= b,,, - a,+b < b,+a,+, 
soy > ya, + . Therefore we have 

xa, + + vh, +,I > 2,ya, + I,b, +, 

and from (x - yb, + I )(y - ya, + )> 0 it follows that 

xa, +vb, 1 yIxv+ya, b,l. 

Since i + 1 is odd this concludes the proof of the lemma. 

(1.7) PROPOSITION. Given r, s and n as in the theorem, Algorithm (1.2) correctly 
determines all positive divisors of n that are congruent to r modulo s. The number of bit 
operations required by the algorithm is O((log 1 )3 ), and O((log n )2 F) for any E > 0 if 
fast multiplication techniques are used. 

Proof. First we prove the correctness of the algorithm. Let xs + r be a positive 
divisor of n that is r modulo s. Then x E Z>0, and (xs + r)d = n for some 
d e Z>o. Multiplying by r*, we see that d r*n r' mod s, so we can write 
d = ys + r' with y E Z>0. Viewing (xs + r)(ys + r') = n modulo 52, we obtain 
xr' + yr (n - rr')/s mod s; notice that the right-hand side is an integer. Multiply- 
ing by r*, we find that 

xr/r*+v=n - rr' 

xrr 

_ r*=mod 
s. This is exactly the case i = I of the series of congruences 

(1.8) xa, +yb, -c,mods (0 i t). 
For i = 0 this congruence is trivially satisfied, and for i > 2 it follows by a 
straightforward inductive argument from the definition of a,, b,, c;. 

Applying Lemma (1.6) with y = 1, we find that there exists i E (0, 1. t} such 
that 

xa, + yb,l < s if i is even, 
2a,b, < xa, + ybi < xy + a,b, if i is odd. 
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Fix such a value of i, and put c = xa, + yb,. From (1.8), the inequalities just stated 
aind 

xy < (xs + r)(ys + r')/s2 = n/s2 

it then follows that c satisfies (1.3). Since x, y satisfy (1.4), this implies that the 
divisor xs + r is indeed discovered by the algorithm. This proves the correctness. 

Next we estimate the number of bit operations. The determination of r* can be 
done in O((log n)2) bit operations, see [5, Exercise 4.5.2.30]. From n/S2 < s and 
a,b, > 0, for odd i, it follows that for each i E (0, 1,..., t) there are at most two 
values of c that satisfy (1.3). Hence for each i the algorithm requires only a bounded 
number of additions, subtractions, multiplications, divisions and square root extrac- 
tions. These operations are performed on integers whose binary length is O(log n), 
so each of them can be done in O((log n)2) bit operations, or O((log n)' +') with fast 
multiplication techniques; see [1]. Since the number of values for i is t + 1 = 

O(log n), this proves the proposition. 
(1.9) Remarks. (a) The proof shows that the algorithm is also polynomial if s/nl/3 

is bounded from below. 
(b) We applied Lemma (1.6) only with y = 1. It may be that another choice of y 

gives rise to a faster algorithm in practice. 
(c) If s is much larger than n'3, then the number of quadratic equations to be 

solved can be greatly reduced. For example, if s > n"/2, then xy e n/,s2 < 1, S() we 
need only consider the cases x = 0 and y = 0. If s > n2/5, one may use the fact that 
a7 + b2 < (4/3)""2s for some i (see [5, Exercises 3.3.4.5 and 9]); for that value of i, 
the number xa, + yb, is in an interval of length at most a constant multiple of s, 
unless xy = 0, so only a bounded number of quadratic equations need be solved. 
More generally, if s > na, with a > ', then the algorithm can be modified in such a 
way that the number of quadratic equations to be solved is bounded by a constant 
only depending on a. This observation is due to H. Zantema. 

2. A Combinatorial Model. We denote by - and A set-theoretic difference and 
symmetric difference, respectively: XA Y = (X - Y) U (Y - X). The cardinality of 
a set X is denoted by #X. 

A weight function on a finite set V is a function w that assigns a nonnegative real 
number to every subset of V, in such a way that w(X U Y) = w(X) + w(Y) for any 
two disjoint subsets X, Y of V. 

(2.1) PROPOSITION. Let V be a finite set, w a weight function on V with w(V) > 0, 
and a e R, a > 4. Let further GD be a system of subsets of V such that 

max{w(D - D'),w(D' - D)} > w(V) 

for all D, D' E 6D with D * D'. Then #6D < c(a), where c(a) is a constant that only 
depends on a. 

(2.2) Remark. The conclusion of (2.1) does naot hold foi a < '. To see this, let V be 
a vector space over the two element field F2, and let 6D be the collection of 
hyperplanes in V. Put w(X) = #X, for X c V. Then w(D - D') = ' #V > a w(V) 
for any two D, D' E 6D with D * D', but #?D = #V tends to infinity with the 
dimension of the vector space. 
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Proof of (2.1). Choose e fixed with 0 < E < 2a - 2, and let q = 4a - 1 - 2e; so 
> 0. We write 

= (D E O'D: /3. w(V) < w(D) < (,3 + E) w W(V)) 

for ,B E R, 0 < f/ < 1. Below we shall prove that 

(2.3) < I + q- 

for all /3. Since we have 

P/el 
'= U 

this implies that 
o ((1/E1 + 1)(i + 71') 

as required. 
We prove (2.3). Let D, D' e oDj, D * D'. Then w(D) and w(D') differ by less 

than E* w( V) in absolute value. Subtracting w( D fl D'), we see that also w( D - D') 
and w(D' - D) differ by less than e*- w(V). Moreover, the largest of w(D -D'), 
w(D' - D) is at least a * w(V), by hypothesis. Hence the smallest is at least 
(a - E) * w(V), and 

w(DA D') = w(D - D') + w(D' - D) 

> (2a - E) w(V) = _(1 +q) w(V). 

Write OD, = (DI, D,. D ,} with m = #,-. The inequality just proved implies 
that 

w wD,,& D, 2(2)(I + q)W(V). 
I 6i< jrnt 

On the other hand, we have 

2 w(D,,& D,) 
I < j c iSnt 

= E #((i,]j): 1i < j <- m and x ED Di A w((x}) 
XE V 

= E #{(i, j): I .iSm,1< j <m,x e Di,x ? Di)*w((x}) 
XE V 

= m., (m - M ) w((x)). 

where m, = #(i: I < i < m, x E D,). From m, * (m - m) < I 2 we now see that 

E w(DD, Dj) < 4m2 E w((x)) = 4m2w(V). 
I4 i <j 441 xE V 

Combined with the earlier inequality this gives 

2 (I + )w( V) < i m2w( V), 

(m - 1)(1 + 7) m 
M r + n-1). 

as required. This proves (2.3) and (2. 1). 
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Remark. Notice the resemblance of the above proposition to Plotkin's bound in 
coding theory, see [8, Chapter 2, Section 2]. 

(2.4) PROPOSITION. Let V, w, 6D, a satisfy all hypotheses of Proposition (2.1), and 
suppose moreover that a > 1/3. Then *GD < 1 1. 

(2.5) Remark. This proposition is best possible in the sense that for a < 1/3 we 
may have #ID > 12. To see this, let #V = 6 and let 6D be the system of subsets 
whose characteristic functions are given by the columns of the following matrix: 

0 1 0 0 1 1 0 0 1 1 0 1 

0 1 0 0 0 0 1 1 1 1 0 1 

O 0 1 0 1 0 1 0 1 0 1 1 

O 0 1 0 0 1 0 1 1 0 1 1 

O O 0 1 1 0 0 1 0 1 1 1 

0 0 0 1 0 1 1 0 0 1 1 1. 

In this example, we take w(X) = #X for all X c V. 
Before we prove (2.4) we treat two lemmas. 

(2.6) LEMMA. Let V,,.V2,..., V, C V and t E Z. Then 

1 / 
-t(t + l).w U v,+ E w(tiX V)>t SwK 

.=1 I <i <jSl i=l 

Proof. For every y E Z we clearly have '(y - t)(y - (t + 1)) > 0, which is the 
same as 

2t(t + 1) + 2,Y(Y-1 > ty 

We apply this to 

y=n, =n (i: 1 i l, x e V;) 

for x E U V ,[. Multiplying the resulting inequality by w((x)) and summing over 
x e U V , we obtain precisely the inequality stated in the lemma. This proves 
(2.6). 

(2.7) LEMMA. Let the hypotheses be as in (2. 1), and let V,, V2,. . ., V, e 6D satisfy 

w (V,I) <1 w( V2 ) <.*.*. < w( V,), Vi :* Vj (I -< i < j -<- I). 

Then the numbers y, = w( Vj)/w( V) satisfy for every t E Z the inequality 

-ty1 + (-t + 1)Y2 + * * * + (-t + 1- l)y + l2t(t + 1) > I1(l- l)a. 

Proof. This follows in a straightforward way from the previous lemma, if we use 
that 

w( U Vi) < w (V) 

w(V, n VJ. w w(VJ)-a . w(V) for I < i < j < 1, 

the last inequality coming from the hypothesis on 6D in (2.1). This proves (2.7). 
Proof of (2.4). Suppose that #6D > 12, and choose DI, D2,..., D12 e 6D such that 
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Write x, = w(Dj)/w(V). Applying (2.7) to (V1, V2) = (DI, D2), t = 0 and to (V,1 V,) 

= (D,,, D12), t = 1 we find that 

x) > a, xi i 1- a. 

With (VI, Ve, . VI) = (DI, D3, D4, D5, D6, D7), = 2 we obtain 

-2x2 - x0 + x5 + 2X6 + 3x7 + 3 > 15 a, 

and (V1,V,, , VI) = (D6, D7, Dg, D9, DI(, D,,), t = 3 leads to 

-3x6 -2x7 - X8 + X() + 2x,, + 6 > 15a. 

Adding the last two inequalities and using that x3 > x2 > a, x I x 1 - a, we 
find that 

-3a + x5 - X6 + X7 - x8 + 3(1 - a) + 9 > 30a. 

Since x5 < x6 and x7 < xx, this yields 

12 > 36a, 
a contradiction. This proves (2.4). 

(2.8) For an integer k > 2, let a(k) be the largest value of a for which the 
hypotheses of (2.1) can be satisfied with #'D = k. It is not difficult to see that a(k) 
exists and that, for given k, it can be computed by solving a linear programming 
problem with 2A + I variables. 

From (2.4) and (2.5) we see that a(12) = ?. Table I shows the values of a(k) for 
2 < k < 12. The table was obtained as follows. The fact that the tabulated values 
are upper bounds for a(k) was shown with linear programming techniques; the help 
of B. J. Lageweg is gratefully acknowledged. In all cases except k = 9 the inequali- 
ties from (2.7) were sufficient to obtain these upper bounds. The fact that the 
tabulated values are lower bounds for a(k) was next shown by H. Zantema, who 
exhibited examples as in (2.5). 

If a > a(k), then in (2.1) we can take c(a) = k - 1. From (2.1) and (2.2) it 
follows that a(k) tends to I for k tending to infinity. The proof of (2.1) shows that 
we can take c(a) = O((a )- 2) for 4 < a < 1, so a(k) = I + O(k'/2), but I do 
not know whether this is the correct rate of convergence. 

TABLE I 

k a(k) 

2 1 = 1.000000 
3 1/2 = 0.500000 
4 1/2 = 0.500000 
5 2/5 = 0.400000 
6 2/5 = 0.400000 
7 3/8 = 0.375000 
8 4/11 = 0.363636 
9 13/37 = 0.351351 

10 9/26 = 0.346154 
11 31/92 = 0.336957 
12 1/3 = 0.333333 
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3. Proof of the Theorem. For a positive integer k we put 

V(k)=(p':pprime,tEZ,tl 1,p'dividesk), 

e.g. V(12) = (2,4,3). We define a weight w on each set V(k) by putting w((p')) = 

log p. An easy calculation shows that w(V(k)) = log k. 
Proof of the Theorem. Since the last assertion of the theorem was proved in Section 

1, see (1.7), it suffices to prove the first assertion. 
We apply (2.4) to V = V(n), with w as above. We have w(V) > 0 if n > 1, which 

may clearly be assumed. We take '5D = (V(d): d divides n, d > 0, d r mod s). 
Let d, d' be two distinct positive divisors of n that are rmod s. Since s divides 

d - d' and is coprime to d, the greatest common divisor of d and d' divides 
(d - d')/s. Therefore we have 

gcd(d,d')< id - d'I < max{d, d') 
5 n1/3 

so 

3 log n < max(log(d/gcd(d, d')), log(d'/gcd(d, d'))}. 

Since V(gcd(d, d')) = V(d) n V(d'), this leads to 

3w(V) < max(w(V(d) - V(d')), w(V(d') - V(d))). 

Hence we can choose a > 3 such that the right-hand side is > a- w(V) for all pairs 
d, d'. Then all hypotheses of (2.4) are satisfied, and therefore #6D < 11. 

This completes the proof of the theorem. 

(3.1) PROPOSITION. For every a E R with a > 4 there exists a constant c(a) with 
the following property. If r, s, n are integers satisfying 

n>O, s>na, gcd(r,s)=l, 

then the number of positive divisors of n that are congruent to r modulo s is at most 
c(a). 

Proof. The proof is similar to the proof just given, with (2.4) replaced by (2.1). 
This proves (3.1). 

If a > a(k), with a(k) as in (2.8), then we can take c(a) = k - I in Proposition 
(3.1). I do not know whether the condition a > l in (3.1) can be replaced by a > 0. 

In the theorem, the value I I cannot be replaced by 5. In fact, H. Cohen proved 
that there exist infinitely many positive integers n that have at least six positive 
divisors in the same coprime residue class modulo a number s > nll3. The first ten 
values of n are listed in Table 2, together with the residue classes r mods that 
contain six divisors of n. The table was computed by A. K. Lenstra with the help of 
the VAX 11-780 computer at the Mathematical Centre in Amsterdam. No further 
examples with n < 3 * 106 exist, and no example with seven divisors in the same 
residue class was found. 
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TABLE 2 

n s r n s r 

245784 65 1,19 1755600 131 2,100 
288288 71 1,28 1796760 137 3,93 
320320 69 1,22 2066400 143 2,25 
480480 83 5,65 2511600 149 7,8 
911064 115 1,34 2841696 175 2,23 
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